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The rates of barrier-free association reactions are primarily controlled by two features of the potential energy
surfacesthe attraction,Vo(R), between the reactants in their most favorable angular orientation, and the product,
Πj(V′′j(R)), of the force constants,V′′j(R), for rocking a reactant away from its most favorable orientation at
a fixed internuclear distance,R. The product of the rocking force constants inn angular coordinates can be
expressed as a quadratic function of the attractive potential, (Πj(V′′j(R))/R4)1/n ) -aVo + bVo

2. When canonical
variational transition-state theory is applied to a potential surface expressed in this form and the rocking
motions are treated as classical harmonic oscillators, the rate constant can be expressed as an analytical function
of the parametersa andb, of the temperature, and of the average relative velocity of the reactants. The rate
constant has a positive activation energy at low temperatures, where the linear term ina dominates; reaches
a maximum at a temperature equal to2a/((n2 - 1) bkB); and declines at high temperatures, or where the
quadratic term above dominates. When applied to the reaction 2CH3 f C2H6, the theory underestimates the
rate constant at low temperatures but correctly predicts the decline in rate constant at higher temperatures.

I. Introduction

Association reactions are more difficult to understand than
most other types of reactions.1,2 Because there is usually no
potential energy barrier to surmount, it is difficult to identify a
single transition state for the reaction. The reaction rate is
affected by the potential energies over a range of geometries in
a multidimensional system. Variational transition-state theory
(VTST)1-3 can be used to determine rate constants for these
reactions, but the theory is difficult conceptually. It requires
users to seek a geometry with a maximum free energy, whereas
chemists are used to systems that seek a minimum free energy.
Except in a few cases where potential energies are proportional
to inverse powers of internuclear distance, analytical expressions
are not obtained. Usually one must perform calculations for a
number of different distances between the reactants and obtains
as the result an array of rate constants as a function of distance
and temperature. This additional level of effort and difficulty
is enough to convince many workers not to use the method. It
also makes it difficult to see a direct relationship between
particular features of the potential energy surface and the rate.

Often the potential energy is a strong and complicated
function of the geometry. Various methods have been tried to
simplify and rationalize this dependence. Johnston4 suggested
that vibrational frequencies would depend exponentially on the
length,R, of the forming bond. Benson5 restricted motion to
regions where the van der Waals radii of nonbonding atoms
would not intersect. Following these leads, investigations have
formulated a number of expressions to state the potential energy
as a function of internuclear distances and bond angles.6,7

In the present article I will take a different approach. Instead
of expressing potential energy as a function ofR and angles,
the rocking force constants andRwill be expressed as a function
of the potential energy,Vo(R), along the reaction path. The

dependence will then be weaker and, I will postulate, can be
expressed as a simple quadratic function. Canonical VTST
(CVTST) will be applied, on the assumption that conserved
vibrational frequencies and moments of inertia of the fragments
do not change. The rocking vibrational modes will be treated
as classical harmonic oscillators. The resulting expression for
the rate constant is simple enough to be differentiated analyti-
cally and leads to an expression for the CVTST rate constant
in closed form. The rate constant at a particular temperature
does not need to be evaluated at more than one geometry.

The method will be presented in the next section. In section
III, it will be applied to the recombination of methyl radicals,
2 CH3 f C2H6 (reaction A). The results will be discussed in
the final section.

II. Theory

Transition-state theory (TST)5 assumes an equilibrium be-
tween reactants and complexes moving in the forward direction.
CVTST1-3 assumes that passage through a bottleneck at a
common distance limits the rate for all quantum states of the
reactants.

The degrees of freedom in the reactants can be divided into
conserved modes and transitional modes.8 Generally the
vibrational frequencies in the reactants do not change greatly
as the reactants start to approach each other; these vibrational
modes are considered to be conserved modes. The transitional
modes start as translations or rotations in the reactants. Three
translational degrees of freedom transform to translation of the
center of mass of the transition state and contribute only a mass
quotient to the rate expression. One translational mode in the
reactants becomes the reaction coordinate, which contributes
kBT/h. Two translational modes become the end-over-end
rotations of the complex, which can be treated as a “pseudo-
diatomic”.9 These rotations contribute the factor ofR2 to the* E-mail: Philip.Pacey@Dal.ca.
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rate expression, whereR is now defined more generally as the
distance between the centers of mass of the reactants at the
bottleneck.

The transformation of the rotations of the reactants will be
the focus of attention in this article. Molecules may have either
0, 2, or 3 rotational degrees of freedom. For example, where
one reactant is an atom and the other is linear, there are 2
rotational modes in the reactants. If the complex is linear, both
of these will transform to degenerate, bending, vibrational modes
in the complex. If the complex is nonlinear, the complex will
have one new bending mode and a third rotational mode. If
both reactants are nonlinear, their 6 rotational degrees of freedom
will become 1 overall rotation of the complex, 1 internal
rotational or torsional mode, and 4 bending vibrations. These
bending vibrations, originating as between 1 and 4 rotational
modes of the reactants, are the “rocking motions” of the title.

One can obtain an expression for the rate constant for these
different cases by starting with the familiar, simple collision
theory.5,10,11

Here p(R) is called the steric factor, andσ12 ) 1 for unlike
reactants or 2 for like reactants. The average relative velocity
is represented byur. C is the potential energy divided by a
Boltzmann energy:

Collision theory is usually derived in a different way than TST
is, but the assumptions are similar. Both theories are statistical
and assume a Boltzmann distribution. If the steric factor is taken
as unity, collision theory is a version of TST for the special
case in which the potential energy of interaction between the
approaching reactants is independent of their angles of orienta-
tion.

If less-drastic simplifications are made, some of the features
of TST can be retained but still be expressed in collision theory
form by incorporating them in the steric factor. For example,
p(R) could be expanded as a product as follows:10,11

HereBE is the quotient of electronic partition functions between
the transition state and the reactants. For example, two doublet
radicals have a 1-in-4 chance of coming together as a singlet,
so reaction A would have aBE value of1/4. Bθ(R) is the ratio
of partition functions for hindered and free motions of the
fragments with respect to the tumbling or rocking angles,θi.
The dots indicate that factors for other degrees of freedom (such
as the umbrella motion in CH3) could also be included. Such
factors will not be included in this work, which will focus on
the factor, Bθ(R).

For a linear reactant,l, such as CN, the partition function for
free rotation is2,5

The moment of inertia,Il, refers to motion of the linear fragment
about its own center of mass. The symmetry number,σl, of
linear radicals would be 1 or 2. A strong hindering potential
would transform the rotational partition function above into the
partition function for two degenerate vibrations, when the axis
of a linear reactant in its most favorable orientation coincides
with the line joining the centers of mass of the two reactants.

The classical expression for such a partition function is5

Here the vibration frequency,νl, is given by

The bending force constant,V′′l, is defined as follows:

We may also assume that the potential energy could be
described by a harmonic function2

Vo(R) is the potential energy when the reactant is in its most
favorable orientation, that is, when the rocking angle,θ1, is zero.
The moment of inertia,Il, serves as an effective mass in eq 6,
because the force constant,V′′l(R), is the second derivative with
respect to angle, instead of the more familiar derivative with
respect to distance.11 Combining eqs 4-6, one can obtain an
expression for the ratio of hindered and free partition functions
for the angular motion of one linear radical.

HereDl is defined as follows:

Note thatDl is defined here to be twice as great as theD of
Darvesh et al.12 One of the convenient aspects of eq 9 is its
lack of dependence on the moment of inertia,Il. As long as
the rocking motions are adequately described as classical
harmonic oscillators and the internal geometry of the reactant
does not change significantly, the moment of inertia cancels
out.

If a reactant,n, is nonlinear, its free rotational partition
function will be2

Here the three moments of inertia relate to motion about the
three principal axes of rotation. For reaction A, the barrier to
rotation about the carbon-carbon axis is very small; accord-
ingly, this motion can be treated as a free internal rotation. If
we suppose that motion about the axis joining the reactants can
be treated similarly for other reactions, the partition function
for this dimension becomes5

Where two nonlinear reactants combine, and where the axis
joining their centers of mass coincides with theirx-axes, thex
components of their rotational partition functions will transform
into an internal rotational partition function, as above, and a
partition function for overall rotation of the pair about thex-axis.
The two partition functions will have the form of eq 12, but
with different moments of inertia, the product of which will be
the same as that of the independent reactants. These degrees
of freedom then cancel out between reactants and transition
state.10,12 The free tumbling motion of a nonlinear reactant about

k(T,R) ) p(R)πR2ur exp(C)/σ12 (1)

C ) -V(R)/kBT (2)

p(R) ) BEBθ(R)... (3)

Qf,l ) 8π2IlkBT/(σlh
2) (4)

QV,l ) (kBT/hνl)
2 (5)

νl ) (2π)-1 (V′′l(R)/Il)
1/2 (6)

V′′l(R) )
∂

2V(R,θ1)

∂θ1
2

(7)

V(R,θ1) ) Vo(R) + 1/2V′′l(R) θ1
2 (8)

Bθl ) σl/2Dl (9)

Dl ) V′′l(R)/kBT (10)

Qf,n ) 24.5π3.5(kBT)1.5(IxIyIz)
0.5/(h3σn) (11)

Qx,n ) (2π)1.5(IxkBT)0.5/hσx (12)
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its y- andz-axes would transform in the transition state into 2
rocking vibrational motions, which may not be degenerate. The
classical partition functions of such motions have the following
form:5

Here the frequencies can be calculated by using analogues of
eq 6; for example:

where V′′y(R) gives the dependence of potential energy on
rotation about they-axis. Combining eqs 11-14 yields the
following expression for the contribution of a nonlinear reactant
to the steric factor:

Hereσyzn is the ratio ofσn, the overall symmetry number of the
reactant, toσxn, the symmetry number for rotation about the
x-axis. It is equal to the number of equivalent paths by which
the reactant can be approached. For a planar methyl radical,
with 2 equivalent faces,σxyn ) 2. Dy andDz are defined as in
eq 10. Thus eq 9 is a version of eq 15 for the special case
where the vibrational frequencies are degenerate. Note that in
both eqs 9 and 15, a principal axis of the reactant must coincide
with the line joining the centers of mass of the reactants.

We can now obtain a VTST expression for combination of
the species considered above. Combining eqs 1, 3, and 15, we
obtain:

Here the subscripti labels the two combining reactants. An
atomic reactant will just contribute a factor of unity (1) to this
product. The productΠi σyzi should correspond to the reaction
path degeneracy,σp, for the process. The exponentC should
now be generalized as follows:

Vo(R) is now the potential energy along the minimum energy
path, when both reactants are in their lowest energy orientation.
The denominator of the product in eq 16 can be reexpressed as
follows:

In eq 16 the three quantitiesR, C, and the product of theD’s
vary as the reactants approach. The relationship between these
quantities is often not a simple function, especially where ab
initio potential energies are available. In CVTST the usual
approach is to expressC andD as separate functions ofR and
calculatek(T,R) at several distances. Instead, in the present
article, R and D will be lumped together, leaving just two
quantities,(R2/Πi(DyiDzi)1/2) and exp(C), to affect the rate. The
parameter of the potential energy surface contained in(R2/Πi-
(DyiDzi)1/2) is Πi(V′′yi(R)V′′zi(R))1/2/R2, which is a measure of
the tightness of the transition state. The parameter inC is Vo(R).

As a second change from the usual practice, I will express
Πi(V′′yiV′′zi)1/2/R2 as a function ofVo, instead of as a function
of R. To symbolize this change,R has been dropped from the
parentheses followingVo andV′′. V′′ is still defined by eq 7
andVo is still the potential energy along the minimum energy
path. It is reasonable to expressΠi(V′′yiV′′zi)1/2/R2 as a power

series inVo. At long distances, bothVo andV′′ (and henceΠi-
(V′′yiV′′zi)1/2/R2) are zero, so the power series should not need
to include a constant term. For simplicity in this article, the
power series will be truncated at two terms, a linear term and
a quadratic term.

Also for simplicity, the subscriptj now labels the individual
rocking modes instead of the individual reactants, andn is the
number of rocking modes. According to this expression, as
the attractive potential,Vo, becomes more negative as reactants
approach, the bending potential,V′′j, (divided byR4/n) at first
increases proportionally, according to the first term. This
behavior would be reasonable where the strongest interaction
between the fragments is covalent bonding, which would weaken
if the fragments are bent away from their most favorable
orientation. In ion-dipole attractions,V′′ would also be
expected to be proportional toVo.5 At closer distances, repulsion
between nonbonded atoms could become more significant, and
the quadratic term in eq 19 would allow flexibility in the form
of the bending potential.

If eq 19 is substituted into eq 16,

and differentiated with respect toC, one can determine the value
of C at the distance where the rate constant is a minimum.

Here x is a dimensionless parameter, dependent only on the
temperature and properties of the potential energy surface. If
eq 21 is then substituted into eq 20, the following expressions
are obtained for the rate constant.

These expressions are the central result of this article. They
are analytical expressions for the CVTST rate constant; they
can be applied to determine the rate constant at a particular
temperature by a single calculation; there is no need to calculate
k(T,R)at several values ofR and then minimize.

At sufficiently low temperatures,x will become much greater
than unity, and eq 22 can be expressed in the following limiting
form:

where e is the base of natural logarithms. The opposite limit
occurs at high temperatures:

The Arrhenius activation energy for the full expression of eq
22 is

Between the extremes of eqs 23 and 24, eq 25 indicates that
the rate for reactions with 2 or more rocking modes would go

Qyz,n ) (kBT/hνy)(kBT/hνz) (13)

νy ) (2π)-1 (V′′y(R)/Iy)
1/2 (14)

Bθn ) σyzn/2(DyDz)
1/2 (15)

k(T,R) )(πR2urBE exp(C)/σ12) Πi(σyzi/2(DyiDzi)
1/2) (16)

C ) -Vo(R)/kBT (17)

Πi(DyiDzi)
1/2 ) Πi(V′′yi(R)V′′zi(R)/kB

2T2)1/2 (18)

((ΠjV′′j)/R
4)1/n ) -aVo + bVo

2 (19)

k(T,R) ) πBEur(σp/σ12) exp(C)/2n/2(aC + bkBTC2)n/2 (20)

Cmin ) (n/2)[1 - x + (1 + x2)1/2], x ) a/nbkBT (21)

k(T) ) πBEur(σp/σ12) exp(n[1 - x + (1 + x2)1/2]/2)/

[n2bkBT(1 + (1 + x2)1/2)]n/2

) πBEur(σp/σ12) exp(n[1 - x + (1 + x2)1/2]/2)/

[na(x-1 + (1 + x-2)1/2)]n/2 (22)

k(Tf0) ) πBEur(σp/σ12)(e/na)n/2 (23)

k(xf0) ) πBEur(σp/σ12)(e/n)n/(2bkBT)n/2 (24)

EA ) -nkBT[1 - n-1 - x + x2/(1 + (1 + x2)1/2)] (25)
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through a maximum,kmax, at temperatureTmax.

where µ is the reduced mass for the colliding radicals. For
reactions in which the linear term in the potential energy
equation (eq 19) dominates,Tmax will tend to be large. Where
Tmax is above the experimental temperature range,k will increase
with temperature, asur in eq 23 depends onT1/2. Where the
quadratic term in eq 19 dominates and there is more than one
rocking mode,Tmax will be small, andk will decrease with
increasing temperature, approximately as in eq 24.

III. Application to Reaction A

Reaction A has been selected as a typical recombination
reaction for comparison. First the parametersa andb will be
evaluated, next the rate constant will be calculated and compared
with experimental outcome, and then the assumptions made in
section II will be revisited.

The ab initio calculations of Darvesh et al.12 enable deter-
mination of the parametersa and b in eq 19. At a carbon-
carbon distance of 4 Å, Darvesh et al. determined the electronic
energies for an eclipsed geometry with both methyl radicals
face to face and for a geometry with 1 of the methyl radicals
tilted at an angle ofπ/6. Assuming a dependence onθ1

2, the
value ofV′′ is calculated to be 4.8 kJ mol-1 rad-2. At a distance
of 3 Å, energies were calculated for 2 geometries with 1 methyl
tilted by π/6, leading to an average value ofV′′ of 73 kJ mol-1

rad-2. (Geometries withθ ) π/2 were also included in those
authors’ work,12 but these would have a much lower Boltzmann
weighting.) Substituting the above values in eq 19 and
combining the simultaneous equations for the 2 distances, I
found coefficienta to equal 0.304 Å-1 rad-2 and b equalled
0.0147 mol kJ-1 Å-1 rad-2.

Substituting the coefficients into eq 22 and calculating rate
constants as a function of temperature gives the results shown
as the solid line in Figure 1, which is in the form of a double-
logarithmic plot. At low temperatures, the rate constant is
predicted to be almost independent of temperature. The curve
is slightly convex upward, with a maximum rate constant at
332 K, as given by eq 26. At higher temperatures, the rate
constant drops more sharply, and at 2000 K is only 42% of
that near room temperature.

Experimental work on this reaction has been summarized by
Hwang et al.13 The values they recommend are shown as the

points in Figure 1. Also shown is the value of Walter et al.18

for 200 K. Note that experiment and theory are in excellent
agreement at high temperatures. At moderate and low temper-
atures, the experimental rate constants are faster than the present
theoretical predictions. Some earlier experimental measure-
ments near room temperature are slower than those shown, and
some are even slower than the theoretical curve. However, the
most recent and most sophisticated measurements are faster than
the theoretical predictions.

The low-temperature approximation, eq 23, is shown as the
dashed line in Figure 1. This expression predicts a rate 37%
faster than the full expression (eq 22) at 200 K. The expressions
diverge at higher temperatures. The high-temperature limiting
approximation, eq 24, is illustrated as the dashed and dotted
line with a slope of-3/2. This rate is 79% faster at 2000 K
than that obtained with the full expression and diverges further
at lower temperatures.

Many assumptions have been made in deriving eq 22; these
will be examined in turn.

TST assumes that the reacting complexes are in equilibrium
with the reactants. Failure of this assumption leads to a
pressure-dependent rate constant.1,2 The rate constants shown
in Figure 1 have been measured close to their high-pressure
limit, indicating that the equilibrium assumption should not lead
to significant error.

TST also assumes that complexes that have passed the critical
value of R do not separate again but always become stable
products. This assumption is the subject of intensive investiga-
tion.1,2,19 Because CVTST gives an upper limit to the rate,3

this assumption could not account for the fact that theoretical
rates are less than the experimental values at low temperatures.

The present approach assumed that the geometry and internal
force field of the methyl radicals are unchanged from the
reactants to the critical complex. Robertson et al.7 have
calculated geometries and frequencies for this reaction at various
values ofR. The only significant change in frequency they
found for a “conserved mode” occurred for the umbrella-bending
modes of the radicals. Tightening of these modes would reduce
the rate at high temperatures by 24% compared with the present
calculation. At the same time, the moment of inertia of each
methyl group would increase because of an increase in C-H
bond length and a reduction in the HCH angles, and this would
increase the rate at high temperatures by 12%. The net reduction
in rate from both changes would be 12%.

The present approach also assumed that the torsional motion
could be treated as a free rotation. Darvesh et al.12 found the
barrier to internal rotation to be 0.01 kJ mol-1 at 4 Å and 0.28
kJ mol-1 at 3 Å. In both cases the barrier is<1% of the
attractive potential,Vo, at the same distance. In Robertson et
al.,7 geometries were optimized and the torsional barrier dropped
to 0.4% of the attractive potential.

The simple harmonic model described in eq 22 treats the
rocking motion by classical mechanics instead of quantum
mechanics. However, the rocking frequencies are low and the
product of 4 classical rocking partition functions exceeds the
product of 4 quantal values5 by only 3-5%, depending on the
temperature and the value ofR.

Darvesh et al.12 found that a sinusoidal dependence onθ1

andθ2 represented the ab initio results at 4 Å better than did
the harmonic dependence assumed herein. The partition func-
tion11 at 200 K for a sinusoidal dependence of potential energy
on θ is 20% greater than the partition function for a harmonic
dependence. Since there are two angles,θ1 and θ2, here the
effect would be a factor of 1.45, which is sufficient to explain

Figure 1. Temperature dependence of the rate constant for reaction
A. Lines, theoretical: s, eq 22; - - -, eq 23; -‚-, eq 24. Points,
experimental:2, ref 13; 9, ref 14; [, ref 15; 0, ref 16; 1, ref 17; ],
ref 18.

Tmax ) 2a/((n2 - 1)bkB) (26)

kmax ) 4BE(σp/σ12) ×
[(π/bµ)en+1(n - 1)n-1/((n + 1)n+1(a)n-1nn)]1/2 (27)
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almost all the difference between experiment and theory at low
temperatures in Figure 1.

A quadratic dependence has been assumed forV′′/R as a
function of Vo. It is difficult to tell whether this is accurate,
since Darvesh et al.12 made ab initio calculations for small
changes ofθ at only 2 values ofR. Robertson et al.7 calculated
vibrational frequencies with a 3-21G basis set at several values
of R and indicated a mixing between internal coordinates in
the normal vibrational modes. The square roots of the products
of the vibrational frequencies (excluding the torsional frequency
discussed above) have been fit to a quadratic of the form of eq
19. For 3 values ofR between 3 and 4 Å, the correlation
coefficient of the fit was 0.995, although individual data points
differed from the fit by up to 27%. It appears that a cubic term
would improve the fit.

In summary, some of the assumptions have a major impact
and others a minor impact. The nonrecrossing assumption is
common to all versions of CVTST. Lack of knowledge of the
form of the potential energy surface affects all dynamical
theories at present. Changes in the internal moments of inertia
and in the umbrella modes would change the rate, although these
changes could be folded into eq 19. Weak rocking motions
may be better treated as hindered rotations than as vibrations.
The latter problem accounts for most of the discrepancy between
experiment and theory at low temperatures; the agreement at
high temperatures is encouraging.

IV. Discussion

The central result of this work is eq 22, which provides an
analytical expression for the rate constant of an association
reaction. The parameters needed are defined in Section II. The
relative velocity can be readily calculated from the masses of
the reactants, the electronic factor from their degeneracies, and
the values ofσ from their symmetry. The parametersa, b, and
x require knowledge of the potential energy of interaction.
Equation 22 is accurate, provided (1) the rocking motions can
be well described as classical harmonic oscillators, (2) the
conserved vibrational frequencies and internal moments of
inertia do not change greatly, and (3) the variation of force
constants with attractive potential can be described by eq 19.
The method should not be used if these conditions are not met.

Several antecedents to this method have also treated the
rocking motions classically. Benson5 used a restricted rotor
model in which there was no change in potential energy for
small rocking motions, but large amplitude rocks were prevented
by hard-sphere repulsions between atoms on adjacent radicals.
Hase3d adopted a semiclassical state density in a CVTST study
of the reverse of reaction A. Quack and Troe20 interpolated
classical harmonic oscillator partition functions in a CVTST
study of several association reactions, including reaction A.
Wardlaw and Marcus6c numerically integrated more complex
rocking potentials over 6 orientational angles for reaction A.
More complete surveys may be found in recent reviews.1,2

Robertson et al.21 applied a “configuration integral” to obtain
an average Boltzmann factor over as many as 5 orientational
angles. Although more cumbersome, the method has several
advantages over the present approach. It allows for more-
complex potential energy functions, including terms that depend
on more than 1 angle at a time. Angles are correctly given a
weight proportional to sinθ, instead of the weight ofθ implicit
in the present approach.12 The limits of integration prevent
double-counting of areas with large values ofθ, (the magnitude
of this effect was considered by Darvesh et al.12).

Troe22 and co-workers, to account for the effect of rocking
potentials on rates, developed a “thermal rigidity factor”, defined

as the ratio of the rate determined with a rocking potential
included to the rate determined with the rocking motion reduced
to a free rotation. The bottleneck may occur at different
distances,R, when the rocking potential is included and
excluded, so there is no simple relationship between the rigidity
factor and eq 22. Their method is capable of handling complex
potential functions, but the algebra is difficult. A report just
published23 on valence interactions between atoms and linear
rotors includes cases where the reaction coordinate does not
coincide with the axis of the rotor. The dependence ona-n/2

found in eq 22 in the present work is paralleled by a dependence
on the anisotropy to the power-n/2 by Maergoiz et al.23 A
common approximation22,23 is that the ratio of the exponential
attenuation factor,R, of the rocking modes to the Morse
parameter,â, is 0.5. Neglecting the dependence onR, this
corresponds to taking the second term inb in eq 19 as zero.
Troe22 has noted that valence potentials may have a stronger
anisotropy at shorter distances, which corresponds to a positive
value ofb in the present notation.

The novelty of the present method lies in the grouping of
the interfragment distance,R, and the rocking force constants,
V′′, expressing their quotient as a function of the attractive
potential,Vo, by means of eq 19. This linking ofR and V′′
may remind readers of the linking ofR andVo for calculating
a centrifugal potential5 in other versions of CVTST.

It is instructive to consider the magnitudes of the variables
in eq 16 as the internuclear distance changes from 3 to 4 Å in
reaction A. At 2000 K, exp(C) decreases by a factor of 5.6
from 3 to 4 Å. At 200 K, exp(C) decreases by a factor of 2.8
× 107. The inverse product of the force constants,Πi(σyzi/
2(DyiDzi)1/2), increases by a factor of 231.R2 increases by a
factor of 1.78. Thus the force constants have a much greater
influence on reaction A than does the factor ofR2.

Equation 22 is simple and transparent and can assist our
understanding of the factors controlling the rates of association
reactions. The location of the bottleneck is primarily decided
by a struggle between the rocking force constants and the
attractive forces.19-23 At short distances, the rocking forces are
large and restrictive, but the Boltzmann factor enhances the
association. At low temperatures, energetic effects are most
important. The exponential factor in eq 20 would become too
large at short internuclear distances, so the bottleneck occurs
at long distances. Here the rocking potential,V′′, is small and
is dominated by the linear term ina in eq 19. At high
temperatures, entropic effects dominate; the bottleneck occurs
where the force constants are strongest, that is, at short distances.
Neither the high- nor low-temperature limiting approximation
is particularly useful for reaction A, for which the value ofTmax

is within the experimental temperature range. The transition
from eq 23 to eq 24 occurs over a very wide range of
temperatures.

The low-temperature approximation is likely to be more
useful whereV′′/R is a linear function ofVo, andTmax is above
the experimental temperature range. An example could be
atom-radical reactions or recombination of linear species, where
interactions between nonbonded atoms could be less.

The only property of the potential surface appearing in the
low-temperature approximation (23) isa. Note that the term
in a in eq 19 dominates at small values ofVo, i.e., at long
distances. In other words, the low-temperature rate is dominated
by the behavior of the potential energy surface at long distances,
where the interactions are weak. Where thermal energies are
small, these weak interactions are important. The greater the
dependence of potential energy on angle (the greater the value
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of a), the slower the ratesanother example of the general rule
that a tight transition state gives a slow rate.5 These statements
lead to the following reexpression of eq 23:

The force constant,V′′, is a measure of the narrowness of the
reaction channel. The width of the valley with respect to 1
rocking angle could be defined as∆θj, the range of values of
θj for which the potential energy is<0. Equation 8 may be
solved to find∆θj as follows:

This quotient also appears in eq 28, which may be rearranged
to give

Thus the rate is proportional to the product of the widths of the
valley with respect to each rocking angle, where the valley
widths are measured in radians. If there are only 2 rocking
angles, as with the reaction of H with CH3, and if∆θj is small,
then R∆θj is approximately equal to the valley width in
Ångstroms, and the rate is proportional to the product of these
widths or to the cross-sectional area of the entrance valley, or,
in effect, to the area of the target.

The temperature dependence of the low-temperature limiting
expression (eq 23) is entirely due to the average relative velocity,
ur. As with simple collision theory, the low-temperature rate
is proportional toT1/2. (Note the slope of 1/2 for the dashed
line in Figure 1.) The Arrhenius activation energy at the low-
temperature limit is1/2kBT, indicating that reacting pairs have
slightly more energy on average than random pairs of radicals.
Pairs of radicals with very little relative translational energy do
not collide very often and so have a low probability of reacting.
The heat capacity of activation,5 dEA/dT, in this limit is 1/2kB,
indicating that an Arrhenius plot would be curved and concave
upward.

In the high-temperature limit, described by eq 24, the rate is
limited only by the other coefficient,b, in eq 19. This
coefficient describes the way the reaction valley becomes
narrower as the attractive potential increases: the faster the
valley becomes narrow, the slower the rate. The high-
temperature rate is limited by the width of the inner reaches of
the reaction channel. Equation 24 is also likely to be useful
for reactions with small or zero values ofa, for example, where
the long-range attraction is dominated by dispersion forces, ion-
ion forces, or ion-induced dipole forces.1

The rate constant in the high temperature equation (eq 24)
depends onT-(n-1)/2. A negative temperature dependence has
been observed experimentally for several reactions with multiple
rocking modes,1,2 such as reaction A. As we can see, this
behavior can be expected when the valley becomes narrower
at shorter internuclear distances. The limiting activation energy
at high temperature is-(n - 1)kBT/2, indicating that reactants
with more than average energy are less likely to react. (Where
there is only 1 rocking mode, the activation energy would be
0.) Two types of energetic reactants are less likely to react:
Pairs of reactants with a lot ofrelatiVe translational energyare
likely to have a large relative angular momentum, which would
create a centrifugal force at short distances, resisting reaction;

reactants that arerotating rapidlywill have this motion changed
to a rocking vibrational motion at short distances. In the latter
case, the spacing between quantum levels will increase; to stay
in the same quantum state, or keep the same angular momentum,
radicals will have to put more energy into rocking. These two
types of extra energy requirements, centrifugal or rocking,
constitute effective barriers to reaction and will slow the reaction
rate. Now, because both large amounts of translational angular
momentum and of tumbling angular momentum work against
reaction, low-energy molecules have a better chance of reacting
than high-energy ones. The average energy of reacting com-
plexes is less than that of all reactant pairs, and the activation
energy is negative. The lower probability of reaction for high-
energy species leads to a narrower distribution of energies
among reacting complexes than among the general population
of reactants. This narrower energy distribution gives a negative
heat capacity of activation,-(n - 1)kB/2. An Arrhenius plot
for a reaction with multiple rocking modes would be convex
upward at high temperatures.

The present results can provide guidance for ab initio
calculations. The factor in square brackets in eq 21, [1- x +
(1 + x2)1/2], varies only between 1.0 and 2.0. Accordingly, the
value of the potential energy on the reaction coordinate at the
variational transition state,Vo,Vts, varies only between-nkBT/2
and-nkBT.

This should provide a useful rule of thumb for ab initio
calculations on association reactions. Once the range of
temperatures for which rate constants are desired is established,
the range of values ofVo needed can be found. Low-level
calculations can establish the relevant values ofR, and then
more-accurate calculations can find values ofVo andV′′. Further
quantum chemical calculations on association reactions would
be desirable. It should be useful to test the accuracy of
truncating at two terms the series expansion of the potential
surface in eq 19.

This method could be extended ifR were determined from
Vo by an expression such as a Morse potential. It has been
shown here thatR does not change the rate constant greatly, so
inaccuracies in this expression should not be detrimental. The
combination of the Morse potential and eqs 8 and 19 ought to
provide a simple potential energy surface, which could then be
used for microcanonical-VTST (µVTST) calculations or clas-
sical trajectory calculations.1 Either method would provide a
way of testing the accuracy of the assumption that species that
pass the critical value ofR do not reappear as reactants. In the
case ofµVTST, one might be able to find analytical expressions
for the positions and heights of the adiabatic barriers for
individual quantum states.

In future work, this method can be tested on other reactions.
The method could be extended to include variations in conserved
vibrational frequencies and internal moments of inertia withVo

in eq 19. Transition states where the axes of the fragments do
not coincide with the interfragment axis could be included.23

The algebra for dissociation reactions could be worked out. The
present calculation could also be reversed, and the temperature
dependence of experimental rate constants could be used to learn
about the potential energy surface for an association-dissocia-
tion process.24
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k(Tf0) ) πBEur(σp/σ12)(e/n)n/2 ×
[lim(Vof0)(R2Vo

n/2/(ΠjV′′j
1/2))] (28)

∆θj ) 81/2|Vo/V′′j|1/2 (29)

k(Tf0) ) πBEur(σp/σ12)(e/23n)n/2 ×
[lim(Vof0)(R2 Πj ∆θj)] (30)

-nkBT/2 > Vo,Vts > -nkBT (31)
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